Multi-class Classification on Riemannian Manifolds for Video Surveillance
نویسندگان
چکیده
In video surveillance, classification of visual data can be very hard, due to the scarce resolution and the noise characterizing the sensors’ data. In this paper, we propose a novel feature, the ARray of COvariances (ARCO), and a multi-class classification framework operating on Riemannian manifolds. ARCO is composed by a structure of covariance matrices of image features, able to extract information from data at prohibitive low resolutions. The proposed classification framework consists in instantiating a new multi-class boosting method, working on the manifold Sym+d of symmetric positive definite d × d (covariance) matrices. As practical applications, we consider different surveillance tasks, such as head pose classification and pedestrian detection, providing novel state-of-the-art performances on standard datasets.
منابع مشابه
On a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملLow dimensional flat manifolds with some classes of Finsler metric
Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.
متن کاملSVM Learning and L Approximation by Gaussians on Riemannian Manifolds
We confirm by the multi-Gaussian support vector machine (SVM) classification that the intrinsic dimension of Riemannian manifolds improves the efficiency (learning rates) of learning algorithms. The essential analysis lies in the study of approximation in Lp (1 ≤ p < ∞) of Lp functions by their convolutions with the Gaussian kernel with variance σ → 0. This covers the SVM case when the approxim...
متن کامل