Multi-class Classification on Riemannian Manifolds for Video Surveillance

نویسندگان

  • Diego Tosato
  • Michela Farenzena
  • Mauro Spera
  • Vittorio Murino
  • Marco Cristani
چکیده

In video surveillance, classification of visual data can be very hard, due to the scarce resolution and the noise characterizing the sensors’ data. In this paper, we propose a novel feature, the ARray of COvariances (ARCO), and a multi-class classification framework operating on Riemannian manifolds. ARCO is composed by a structure of covariance matrices of image features, able to extract information from data at prohibitive low resolutions. The proposed classification framework consists in instantiating a new multi-class boosting method, working on the manifold Sym+d of symmetric positive definite d × d (covariance) matrices. As practical applications, we consider different surveillance tasks, such as head pose classification and pedestrian detection, providing novel state-of-the-art performances on standard datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

SVM Learning and L Approximation by Gaussians on Riemannian Manifolds

We confirm by the multi-Gaussian support vector machine (SVM) classification that the intrinsic dimension of Riemannian manifolds improves the efficiency (learning rates) of learning algorithms. The essential analysis lies in the study of approximation in Lp (1 ≤ p < ∞) of Lp functions by their convolutions with the Gaussian kernel with variance σ → 0. This covers the SVM case when the approxim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010